Current Issue : January-March Volume : 2026 Issue Number : 1 Articles : 5 Articles
A lateral overflow integration capacitor (LOFIC) CMOS image sensor (CIS) can achieve high-dynamic-range (HDR) imaging by combining a low-conversion-gain (LCG) signal with a high-conversion-gain (HCG) signal. However, the signal-to-noise ratio (SNR) drops at the switching point from HCG signal to LCG signal due to the significant pixel noise in the LCG signal. To address this issue, a triple-gain LOFIC CIS with a middle-conversiongain (MCG) signal has been introduced. In this work, we propose an area-efficient readout circuit for the triple-gain LOFIC CIS, using amplifier and capacitor sharing techniques to process the HCG, MCG, and LCG signals. A test chip of the proposed readout circuit was fabricated using the 0.18 μm CMOS process. The area overhead was only 7.6%, and the SNR drop was improved by 8.05 dB compared to the readout circuit for a dual-gain LOFIC CIS....
Aluminum nitride (AlN) is a material of wide interest in the optoelectronics and highpower electronics industry. The deposition of AlN thin films at elevated temperatures is a well-established process, but its implementation on flexible substrates with conductive oxides, such as ITO-glass or ITO-PET, poses challenges due to the thermal degradation of these materials. In this work, the deposition and characterization of AlN thin films by reactive sputtering at a low temperature (RT and 100 ◦C) on ITO-glass and ITO-PET substrates are presented. The structural, optical, and electrical properties of the samples have been analysed as a function of the sputtering power and the deposition temperature. XRD analysis revealed the absence of peaks of crystalline AlN, indicative of the formation of an amorphous phase. EDX measurements performed on the ITO-glass substrate with a radiofrequency power applied to the Al target of 175Wconfirmed the presence of Al and N, corroborating the deposition of AlN. SEM analyses showed the formation of homogeneous and compact layers, and transmission optical measurements revealed a bandgap of around 5.82 eV, depending on the deposition conditions. Electrical resistivity measurements indicated an insulating character. Overall, these findings confirm the potential of amorphous AlN for applications in flexible optoelectronic devices....
Power electronics convert and control electrical power in applications ranging from electric motors to telecommunications and computing. Ongoing efforts to miniaturize these systems and boost power density demand advanced thermal management solutions to maintain optimal cooling and temperature control. Spray cooling offers an effective means of removing high heat fluxes and keeping power electronics within safe operating temperatures. This study presents an experimental investigation of flash spray cooling in a closed-loop system using R410A refrigerant. In particular, two nozzles with different spraying angles are used to study the effects of the distance between the spray nozzle and a heated flat surface, as well as the mass flow rate of the coolant. Results indicate that three key flow-pattern factors—surface coverage, impingement intensity, and liquid film dynamics—govern the heat transfer mechanisms and determine cooling efficiency. Flash spray cooling using refrigerants like R410A demonstrates strong potential as a highperformance thermal management strategy for next-generation power electronics....
In this article, we present density functional theory (DFT) calculations for Zn(1−x)MxO, where M represents one of the following substitutional metallic impurities: Ga, Cd, Cu, Pd, Ag, In, or Sn. Our study is based on the wurtzite structure of pristine ZnO. We employ the QUANTUM ESPRESSO package, using a fully unconstrained implementation of the generalized gradient approximation (GGA) with an additional U correction for exchange and correlation effects. We analyze the density of states, energy gaps, and absorption spectra for these doped systems, considering the limitations of a finite-size cell approximation. Rather than focusing on precise numerical values, we highlight the following two key aspects: the location of impurity-induced electronic states and the overall trends in optical properties across the eight systems, including pristine ZnO. Our results indicate that certain dopants introduce electronic levels within the band gap, which enhance optical absorption in the visible, near-infrared, and near-ultraviolet regions. For instance, Sn-doped ZnO shows a pronounced absorption peak at ∼2.5 eV, which is in the middle of the visible spectrum. In the case of Ag and Pd impurities, they lead to increased electromagnetic radiation absorption at the near ultra-violet spectrum. This represents a promising performance for efficient solar radiation absorption, both at the Earth’s surface and in outer space. Furthermore, Ga- and In-doped ZnO present bandgaps of ∼0.9 eV, promising an interesting performance in the near infrared region. These findings suggest potential applications in solar energy harvesting and selective sensors....
Contributing to the quest for renewable energy harvesting, we present, in the work at hand, a conceptual model of a large-scale wireless microwave power harvester that takes the structure of a smart reconfigurable harvesting surface. This structure is assembled by numerous elementary harvesters that, as a whole, present both wide solid angle coverage and high receiving antenna gain. This is achieved by employing two levels of organization, both in the horizontal and in the vertical planes. The horizontal plane, which is the host receiving surface, is tiled by employing square radiators and forms hierarchical subarray structures. At the same time, hieratical structures are also employed in the vertical plane where the beamforming network collects the received power in a drainagebasin fashion (one receiving port is fed by its assigned and also its neighboring antenna elements) achieving, in this way, increased efficiency. The presented results verify the contributed design....
Loading....